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Introduction 

One simple question asked some tens of thousands of years ago, allowed 
humans the power to discover new ideas and create remarkable 
innovations. As a result of answering this question, humans have created 
organized societies, towns, cities, and eventually the science- and 
technology-based civilization we live in today. All of this came to be because 
humans asked a simple question: Why? You see, humans are able to 
recognize that certain things cause other certain things and that tinkering 
with one can change the other. No other species can understand this, not 
like humans. This new science is what Judea Pearl and Dana MacKenzie 
refer to as “causal inference,” and it presumes that the human brain is the 
most advanced tool ever designed for managing causes and effects. Our 
brains can store a vast amount of causal knowledge, giving us the power to 
unleash this knowledge and answer some of the most pressing questions of 
all time. Questions like: “How effective is a given treatment in preventing 
disease? Did the new tax law cause our sales to go up, or was it our ad 
campaign? What is the health-care cost attributable to obesity? Can hiring 
records prove an employer is guilty of a policy of sex discrimination? And 
even, I’m about to quit my job. Should I?” These questions, while different, 
all concern themselves with cause-and-effect relationships. Today, science 
allows us to not just ask these questions, but answer them as well. This new 
science has created a simple mathematical language that can now be used 
to combine our knowledge with data and answer causal questions like the 
ones above.  

Authors Judea Pearl and Dana MacKenzie hope that the new science of 
causal inference will help us better understand how humans understand 
cause-and-effect relationships better than computers and data. 
Furthermore, “in the age of computers, this new understanding can also 
bring the prospect of amplifying our innate abilities so that we can make 
better sense of data, both big and small.” 



The Beginning of the Causal Revolution 

For the last few decades, the phrase “correlation does not imply causation” 
has been a mantra chanted by scientists. It’s been largely accepted, partly 
due to the work and research of Karl Pearson, a twentieth-century English 
mathematician who zealously worked to prove that causation was nothing 
more than a special case of correlation. Simply put, Pearson believed that 
data was all there was to science. Nothing else. He believed this was true 
because causation could not be proven or represented by data. Therefore, 
causation is scientifically unacceptable. 

Pearson belonged to a philosophical school called positivism, which 
believed that the universe is a product of human thought and that science is 
only a description of those thoughts. Therefore, causation is an objective 
process that happens outside the human brain, thus could have no scientific 
meaning. Prepared to discard causation completely, Pearson further proved 
his point by identifying correlations he believed were false or bogus. For 
instance, one such correlation is the one between a nation’s per capita 
chocolate consumption and its number of Nobel Prize winners. This 
correlation seems ridiculous because we cannot fathom the idea that eating 
chocolate can cause a Nobel Prize!  

What Pearson failed to point out, however, is that more people in wealthy, 
Western countries eat chocolate, and the Nobel Prize winners are typically 
from those countries. The ironic thing is that this is a causal explanation, 
which, for Pearson, is not necessary for scientific thinking. Furthermore, 
geneticist Sewall Wright later proved that causation could be represented 
mathematically, which he discovered while researching at Harvard 
University. While studying the coats and markings on guinea pigs, Wright 
sought to determine how hereditary their markings were.  

Wright began to doubt that genetics alone determined the amount of white 
and suggested that developmental factors in the womb were causing the 
different markings and variations; therefore, he estimated the 



developmental factors by creating a mathematical formula. In Wright’s 
case, the desired and unknown quantity is represented by d, which is the 
effect of “developmental factors” on white fur. Other quantities included in 
the equation included h, for “hereditary” factors, which are also unknown. 
Finally, Wright showed that if we know the causal quantities, then we can 
predict correlations in the data by a simple graphical rule. By creating a 
path diagram to represent these relationships, Wright demonstrated that 
developmental factors have an effect on the gestation period which have 
then have an effect on coat pattern, and so on.  

By turning this path diagram into a mathematical equation, Wright was 
able to determine that 42 percent of the variation in coat pattern was due to 
heredity, and 58 percent was developmental. He later went on to publish a 
general paper called “Correlation and Causation” that explained how path 
analysis worked in settings other than guinea pig breeding. Of course, given 
the times, Wright was criticized and his findings were argued and debunked 
by his peers. Little did his peers know, however, that Wright’s findings were 
just the beginning of the Causal Revolution. 



We Must Use Counterfactual Data to Truly 
Understand Results 

For scientists, data is everything. Data is essential when trying to determine 
the underlying cause of an effect or vice versa. Therefore, scientists rely on 
data for much of their work. Unfortunately, data can be skewed and can 
lead to erroneous misinterpretations. To show just how important and 
pivotal data can be, let’s take a look at the public debate that erupted in 
Europe when the smallpox vaccine was introduced. 

Unexpectedly, data showed that more people died from the smallpox 
vaccine than from smallpox itself. Naturally, some people used this 
information to argue that the vaccine should be banned, even though it was 
actually saving lives and eradicating the disease. Here’s how that data 
became skewed: “Suppose that out of 1 million children, 99 percent are 
vaccinated and one percent are not. If a child is vaccinated. He or she has 
one chance in one hundred of developing a reaction, and the reaction has 
one chance in one hundred of being fatal.” In other words, the numbers add 
up to 99 fatalities. “Meanwhile, 10,000 don’t get vaccinated, 200 get 
smallpox, and 40 die from the disease. In summary, more children die from 
vaccination (99) than from the disease (40).”  

Of course, parents were marching to the health department with signs 
saying, “Vaccines kill!” And can you blame them? The data seemed like it 
was on their side, but we must take a closer look at the numbers to truly 
understand the data. To do this, we must ask ourselves, “What if we had set 
the vaccination rate to zero?” If this were the case, we can conclude that out 
of 1 million children, 20,000 would have gotten smallpox, and 4,000 would 
have died. When we compare the counterfactual world with the real world, 
we see that not vaccinating would have cost the lives of 3,861 children.  

Furthermore, data can be used to show the relationship between a child’s 
shoe size and reading ability. “Children with larger shoes tend to read at a 
higher level. But the relationship is not one of cause and effect. Giving a 



child larger shoes won’t make him read better!” Instead, the variables can 
be explained by the child’s age. The older the child, the better the reading 
ability. Pearson lacked similar common sense when making the Nobel Prize 
correlation with eating chocolate. For instance, if we look only at seven-
year-olds, then we can expect to see no relationship between shoe size and 
reading ability. It’s this kind of junction that allows us to begin climbing the 
Ladder of Causation.  



The First Step of the Ladder of Causation 
Deals with Passive Observation 

It was the story of Adam and Even in the Garden of Eden that made author 
Judea Pearl recognize the creation of human knowledge and 
understanding. He recalls being concerned about the “notion that the 
emergence of human knowledge was not a joyful process but a painful one, 
accompanied by disobedience, guilt, and punishment.” Is human 
knowledge worth giving up a carefree life in Eden? Surely, the agricultural 
and scientific revolutions that followed were worth all the economic 
hardships, wars, and social injustices of modern life, right? This 
philosophical question is what led Pearl to confront the Ladder of 
Causation. 

He recognized that God asked Eve, “What is that you have done?” And Eve 
replied, “The serpent deceived me, and I ate.” God was asking Eve “what,” 
and Eve answered, “why.” God asked for the facts and received 
explanations. In other words, humans have always been fascinated by the 
intricacies of cause-and-effect relationships.  

There are three levels of causation or three rungs of the ladder. Most 
animals, as well as present-day learning machines, are on the first rung, 
learning by association. For instance, this is what the owl does as it 
observes its prey move and figures out where the rodent is going to be at 
the time the owl strikes. The owl doesn’t concern itself with asking why. 
Similarly, a computer Go program does this when it studies a database of 
millions of Go games to figure out which moves are associated with a higher 
percentage of wins. This first rung relies on making predictions based on 
passive observations and is characterized by the question, “What if I see…” 

For example, a marketing director might ask a director at a department 
store, “How likely is a customer who bought toothpaste to also buy dental 
floss?” Questions like these are the basis of statistics, and the first step in 
answering them is by collecting and analyzing data. To answer this 



question, we must first look at the data on the shopping behavior of 
customers who bought toothpaste. We must then compute the proportion 
of those customers who also bought dental floss. This proportion is called a 
conditional probability, and we can write it symbolically like this: P(floss | 
toothpaste) or “What is the probability of floss, given that you see 
toothpaste?”  

Statisticians use methods like the one above to identify associations 
between variables; however, statistics alone cannot tell us about cause and 
effect. Is toothpaste or floss the cause? For the sales manager, it doesn’t 
really matter. “Good predictions need not have good explanations. The owl 
can be a good hunter without understanding why the rat always goes from 
point A to point B.” Systems that work at the first level of the Ladder of 
Causation lack flexibility and adaptability, but when we step up to the next 
level of causal queries, we begin to change the world. Questions like, “What 
will happen to our floss sales if we double the price of toothpaste?” requires 
a new kind of knowledge which we will find at rung two of the Ladder of 
Causation. 



Rung Two of the Ladder of Causation Is 
About Taking Action  

The defining query of the second rung of the Ladder of Causation is “What 
if we do…” Or, “if we change the environment, what will happen?” The “do” 
is important. The second rung is characterized by actively influencing 
outcomes, unlike the first rung which only relies on passive observation. 
How will doubling the price of toothpaste affect floss sales? We could write 
it symbolically like this: P(floss | do(toothpaste), which asks about the 
probability of selling floss at a certain price, given that we set the price of 
toothpaste at another price.  

Additionally, the manager might recognize that he has too much toothpaste 
in the warehouse. So, he asks the question, “How can we sell it?” or “What 
price should we sell it for?” These questions require an action, an 
intervention, which we perform mentally before deciding what kind of 
action to take. This requires a causal model. In fact, we perform 
interventions like this in our daily lives all the time. For example, if you 
have a headache, you might take an aspirin to cure it. You intervene on one 
variable to affect another one.  

Unlike the first rung of the ladder, computers cannot perform on the 
second rung. They cannot answer these types of questions; after all, 
computers are not like humans who understand cause-and-effect 
relationships. Humans, on the other hand, have the ability to test the effect 
of something through controlled experiments, something humans have 
been doing since Biblical times. You see, when Ashpenaz, the overseer of 
King Nebuchadnezzar’s court was tasked with identifying the best of the 
captured nobles to serve in the court, he was faced with a problem. As part 
of the education of these children, they would get to eat royal meat and 
drink royal wine. Of course, this is where the problem occurred. 

One of his favorites, a boy named Daniel, refused to eat the meat for 
religious reasons. Daniel could not eat meat that wasn’t prepared according 



to Jewish laws, and so he asked that he and his friends be given a diet of 
vegetables instead. To prove that vegetables wouldn’t affect their 
performance, Daniel asked Ashpenaz to conduct a controlled experiment. 
For ten days, four of them would only be fed vegetables while the rest 
feasted on the King’s meat and wine. After ten days, they would compare 
the two groups. The results of the experiment proved that the vegetarian 
diet gave Daniel and his three companions more strength and mental 
stamina. In fact, the King was so impressed, that he gave each of them a 
favored place in his court. 

You see, when Ashpenaz was faced with Daniel’s problem, he asked a 
question about causation: Will a vegetarian diet cause my servants to lose 
weight? To answer this question, Daniel proposed a controlled experiment 
by setting up two groups of people who were similar in many ways and 
comparing the two after some time. While Daniel’s experiment was 
strikingly modern for his time, he didn’t think of one thing: confounding 
bias (which we will later explore in more depth). For instance, if Daniel’s 
group was overall healthier than the control group, then their diet would 
have nothing to do with their healthy appearance! Thinking about all of the 
various factors that affect an experiment leads us to the third and final rung 
of the Causation Ladder. 



The Third Rung of the Causation Ladder is 
About Identifying Countractuals 

In the previous chapter, we discussed the causal relationship of taking 
aspirin to cure a headache. Once that headache is gone, you might begin to 
wonder why it is now gone. Was it the aspirin you took? The food you ate? 
The good news you heard? It’s these kinds of queries that bring us to the 
top run of the Ladder of Causation, the level of counterfactuals. 
Counterfactuals require us to go back in time, change history, and ask 
“What would have happened if I had not taken the aspirin?”  

Counterfactuals, unlike data, aren’t always factual. But the human brain is 
constantly seeking explanations for such scenarios. For instance, Eve 
explained the reason for her actions was that the serpent deceived her. It is 
this ability that distinguishes humans from animal intelligence and 
machines. In fact, we see counterfactuals all the time in the courtroom as it 
is very old and known in the legal profession as “but-for-causation.” For 
example, “if the defendant fired a gun and the bullet struck and killed the 
victim, the firing of the gun is a but-for, or necessary, cause of the death, 
since the victim would be alive if not for the firing.” Similarly, if Joe blocks 
a fire exit with furniture and Judy dies in the fire because she could not 
escape, then Joe is legally responsible for her death even though he didn’t 
light the fire itself. 

Speaking of fire, a classic example that demonstrates necessary causation is 
that of a fire that broke out after someone struck a match. Many would 
argue that the fire wouldn’t have happened if it weren’t for the match being 
lit, but they forget to take the presence of oxygen into account. We ignore 
the causal relationship between oxygen and fire. Unlike humans, a 
computer cannot think in terms of causal relationships. According to a 
computer, both the match and oxygen would play an equal role in the fire 
since they are both necessary causes. As a result, the computer would 
determine that the oxygen is to blame for the fire. 



Furthermore, a computer would likely calculate the match as the sufficient 
cause of the fire. While both the presence of the match and oxygen are both 
necessary for the fire to break out, the computer can reason that the match 
was sufficiently responsible, making it the cause of the fire. All of this 
simply means that necessary and sufficient causes are crucial for answering 
causal questions and play an important role in the third rung of the Ladder 
of Causation. But now that you understand the three rungs, what’s next?  



Confounding Bias is a Lurking Third Variable 
that Scientists Must Take into Account 

As we mentioned in a previous chapter, controlled experiments have been 
around for as long as humans. We also mentioned that Daniel’s experiment 
was modern in all ways except one: he failed to take confounding bias into 
account. “Confounding bias occurs when a variable influences both who is 
selected for the treatment and the outcome of the experiment.” 
Additionally, they are typically associated with the second rung of the 
Ladder of Causation, which means intervention is required to adjust the 
experiment. 

For example, if you were testing a drug and gave it to patients who are 
younger on average than the people in the control group, then age becomes 
a confounder. Age becomes a “lurking third variable.” If there is no data on 
the ages at all, then the results from the test can’t necessarily be trusted or 
true. But if we know the confounding variable Z is age, then we can 
compare the treatment and control groups in every age group separately. In 
this scenario, we can take an average of the effects, weighting each age 
group according to its percentage in the target population. This method of 
compensation is called “adjusting for Z” or “controlling for Z.” 

Confounders, however, aren’t always easy to compensate for. For instance, 
in the 1950s and 1960s debate about the link between smoking and lung 
cancer, confounders could be just about anything. Some suggested there 
could be a smoking gene that caused people to crave cigarettes and also 
made them more likely to develop lung cancer. Of course, there was an easy 
way for statisticians to test the effect of smoking through a randomized 
controlled trial (RCT) in which treatment, such as smoking, is randomly 
assigned to some individuals and not to others and the observed changes 
are then compared. But randomization, in this case, was certainly not 
ethical. Researchers couldn’t ethically assign a random group of people to 
smoke for 30 years to test the link to cancer, the results could be deadly! 



Of course, the debate between smoking and cancer wasn’t about tobacco 
nor cancer. It was all about the innocuous word “caused,” and it wasn’t the 
first time physicians were confronted with perplexing causal questions. In 
fact, it was the mid-1700s when James Lind discovered that citrus fruits 
could prevent scurvy. But now we are met with the question, “What is it 
about citrus fruits that prevent scurvy?” At the time, vitamins weren’t even 
invented yet, so scientists couldn’t say which citrus fruits worked better 
than others at preventing the disease. So if we don’t know why oranges 
work, we might be tempted to try another fruit if we run out of oranges. 

Therefore, scientists use mediation to help answer these types of questions. 
The mediator for scurvy is vitamin C. Unfortunately, two expeditions of 
Robert Falcon Scott to Antarctica in 1903 and 1911 all suffered greatly from 
scurvy because of one thing: they didn’t know the mediator. Sure, it was 
known that citrus fruits prevented scurvy but many believed it was a result 
of the fruit’s acidity. The causal diagram was Citrus Fruits → Acidity → 
Scurvy. From this point of view, Coca-Cola would work! Upon hearing that 
despite taking lime juice, many explorers became ill, the medical 
community was shocked and confused. It wasn't until 1930 that Albert 
Szent-Gyorgi discovered that it was ascorbic acid or vitamin C that was the 
particular nutrient that prevented scurvy, changing the causal path to 
Citrus Fruits → Vitamin C → Scurvy.  



Causal Relationships and Human Thought is 
the Key for Artificial Intelligence  

Causal relationships are an important part of human discovery. If we never 
ask “Why?” then we never make new discoveries! But can we teach 
machines to understand causes and effects too? To answer this question, 
we’ll need to take a look at causal models and big data. Today, we have 
more raw data than ever before as our world moves towards an online 
platform. “For example, in 2014 Facebook reportedly was warehousing 300 
petabytes of data about its 2 billion active users. They had data about the 
games people play, the products they buy, the names of their Facebook 
friends, and of course, all their cat videos!” 

But just as our online data is growing, so is our data in science. For 
example, the 1000 Genomes Project collected two hundred terabytes of 
information in what it calls “the largest public catalog of human variation 
and genotype data.” But how do we extract meaning from all these 
numbers, bits, and pixels? Well, while the data seems immense, the 
questions are simple: “Is there a gene that causes lung cancer? What kinds 
of solar systems are likely to harbor Earth-like planets? What factors are 
causing the population of our favorite fish to decrease, and what can we do 
about it?” Many believe the answers to these questions will be found in 
data, but as you now know, these are all causal questions that cannot be 
answered on data alone. 

Therefore, Big Data and causal inference must work together to determine 
the answers. The first step is to draw causal diagrams as we saw in the 
previous chapter. Once a diagram is drawn, it becomes possible to create a 
mathematical formula that demonstrates the relationship existing between 
correlation and causation. In a causal diagram, we can clearly see all the 
known factors in one place. These factors are then linked together with 
arrows, demonstrating how one directly affects another. Once they are 
linked, it becomes possible to see which are mediators and which are 
confounders. For example, let’s begin with the assumption that blood 



pressure is known to be a possible cause of a heart attack, and Drug B is 
supposed to reduce blood pressure. Researchers might begin by drawing a 
diagram with arrows linking the drug and blood pressure, lifespan and 
blood pressure, and the drug and lifespan.  

As you may know, age affects both blood pressure and lifespan, regardless 
of the drug, and is linked to both factors with an arrow that points in two 
directions, which allows us to see that age is a confounder. From here, the 
diagram can then be expressed in a formula. Because we have turned the 
causal relationship into a step-by-step logical process, we can then enter 
this cause-and-effect process into robots and computers. The formula could 
then be used to calculate both an answer and the statistical uncertainty in 
that answer. In other words, this would mean that computers would finally 
be able to ask why? 



Final Summary 

“Correlation is not causation” has long been accepted in the scientific 
community, and for good reason! Sure, the rooster crowing can be 
correlated with the sunrise, but it doesn’t cause the sunrise. The problem, 
however, is that there is a large misunderstanding about what causation is. 
Today, we understand that causation is formed like a ladder with three 
rungs. As you climb the ladder, your questions become more complex and 
require a better understanding of causal relationships. Additionally, 
through the proper methodology, it is possible to determine when a 
correlation implies causation. Even more, this method could then be 
programmed into computers, allowing them to answer causal questions. 
Computers being able to answer why is the key to artificial intelligence and 
has the potential to open up a world of possibilities for scientific discoveries 
and advancements. 
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